Layerless fabrication with continuous liquid interface production.
نویسندگان
چکیده
Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.
منابع مشابه
Design and Fabrication of Biodegradable Drug-Eluting Devices Using the 3D Printing Technique Continuous Liquid Interface Production (CLIP)
متن کامل
Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production
Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication te...
متن کاملMass Customization: Reuse of Digital Slicing for Additive Manufacturing
Additive manufacturing, also known as 3D printing, enables production of complex customized shapes without requiring specialized tooling and fixture, and mass customization can then be realized with larger adoption. The slicing procedure is one of the fundamental tasks for 3D printing, and the slicing resolution has to be very high for fine fabrication, especially in the recent developed Contin...
متن کاملMass Customization: Reuse of Topology Information to Accelerate Slicing Process for Continuous Liquid Interface Production
Additive manufacturing (AM), also known as 3D printing, constructs a 3D object in a layer by layer fashion. Comparing to traditional manufacturing technologies, it can build objects with complex individualized features with little extra effort. This characteristic endows additive manufacturing with the potential to realize mass customization. Continuous Liquid Interface Production (CLIP), a new...
متن کاملThermal Simulation of Solidification Process in Continuous Casting
In this study, a mathematical model is introduced to simulate the coupled heat transfer equation and Stefan condition occurring in moving boundary problems such as the solidification process in the continuous casting machines. In the continuous casting process, there exists a two-phase Stefan problem with moving boundary. The control-volume finite difference approach together with the boundary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 42 شماره
صفحات -
تاریخ انتشار 2016